3.657 \(\int \frac {\sqrt {d+e x} (f+g x)^3}{\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=269 \[ -\frac {16 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2 \left (2 a e^2 g-c d (3 e f-d g)\right )}{35 c^4 d^4 e \sqrt {d+e x}}+\frac {16 g \sqrt {d+e x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2}{35 c^3 d^3 e}+\frac {12 (f+g x)^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}{35 c^2 d^2 \sqrt {d+e x}}+\frac {2 (f+g x)^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{7 c d \sqrt {d+e x}} \]

[Out]

-16/35*(-a*e*g+c*d*f)^2*(2*a*e^2*g-c*d*(-d*g+3*e*f))*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^4/d^4/e/(e*x+d)
^(1/2)+12/35*(-a*e*g+c*d*f)*(g*x+f)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^2/d^2/(e*x+d)^(1/2)+2/7*(g*x+f
)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/(e*x+d)^(1/2)+16/35*g*(-a*e*g+c*d*f)^2*(e*x+d)^(1/2)*(a*d*e+(a
*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^3/d^3/e

________________________________________________________________________________________

Rubi [A]  time = 0.42, antiderivative size = 269, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {870, 794, 648} \[ \frac {12 (f+g x)^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}{35 c^2 d^2 \sqrt {d+e x}}+\frac {16 g \sqrt {d+e x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2}{35 c^3 d^3 e}-\frac {16 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2 \left (2 a e^2 g-c d (3 e f-d g)\right )}{35 c^4 d^4 e \sqrt {d+e x}}+\frac {2 (f+g x)^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{7 c d \sqrt {d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[d + e*x]*(f + g*x)^3)/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(-16*(c*d*f - a*e*g)^2*(2*a*e^2*g - c*d*(3*e*f - d*g))*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(35*c^4*d^
4*e*Sqrt[d + e*x]) + (16*g*(c*d*f - a*e*g)^2*Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(35*c^
3*d^3*e) + (12*(c*d*f - a*e*g)*(f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(35*c^2*d^2*Sqrt[d + e
*x]) + (2*(f + g*x)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(7*c*d*Sqrt[d + e*x])

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rule 794

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rule 870

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e*(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p + 1))/(c*(m - n - 1)), x] - Dist[(n*(c*e*f + c*d*g
 - b*e*g))/(c*e*(m - n - 1)), Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c,
 d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Integ
erQ[p] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (IntegerQ[2*p] || IntegerQ[n])

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x} (f+g x)^3}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac {2 (f+g x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{7 c d \sqrt {d+e x}}+\frac {\left (6 \left (c d e^2 f+c d^2 e g-e \left (c d^2+a e^2\right ) g\right )\right ) \int \frac {\sqrt {d+e x} (f+g x)^2}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{7 c d e^2}\\ &=\frac {12 (c d f-a e g) (f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{35 c^2 d^2 \sqrt {d+e x}}+\frac {2 (f+g x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{7 c d \sqrt {d+e x}}+\frac {\left (24 (c d f-a e g)^2\right ) \int \frac {\sqrt {d+e x} (f+g x)}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{35 c^2 d^2}\\ &=\frac {16 g (c d f-a e g)^2 \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{35 c^3 d^3 e}+\frac {12 (c d f-a e g) (f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{35 c^2 d^2 \sqrt {d+e x}}+\frac {2 (f+g x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{7 c d \sqrt {d+e x}}-\frac {\left (8 (c d f-a e g)^2 \left (2 a e^2 g-c d (3 e f-d g)\right )\right ) \int \frac {\sqrt {d+e x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{35 c^3 d^3 e}\\ &=-\frac {16 (c d f-a e g)^2 \left (2 a e^2 g-c d (3 e f-d g)\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{35 c^4 d^4 e \sqrt {d+e x}}+\frac {16 g (c d f-a e g)^2 \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{35 c^3 d^3 e}+\frac {12 (c d f-a e g) (f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{35 c^2 d^2 \sqrt {d+e x}}+\frac {2 (f+g x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{7 c d \sqrt {d+e x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 136, normalized size = 0.51 \[ \frac {2 \sqrt {(d+e x) (a e+c d x)} \left (-16 a^3 e^3 g^3+8 a^2 c d e^2 g^2 (7 f+g x)-2 a c^2 d^2 e g \left (35 f^2+14 f g x+3 g^2 x^2\right )+c^3 d^3 \left (35 f^3+35 f^2 g x+21 f g^2 x^2+5 g^3 x^3\right )\right )}{35 c^4 d^4 \sqrt {d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[d + e*x]*(f + g*x)^3)/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(2*Sqrt[(a*e + c*d*x)*(d + e*x)]*(-16*a^3*e^3*g^3 + 8*a^2*c*d*e^2*g^2*(7*f + g*x) - 2*a*c^2*d^2*e*g*(35*f^2 +
14*f*g*x + 3*g^2*x^2) + c^3*d^3*(35*f^3 + 35*f^2*g*x + 21*f*g^2*x^2 + 5*g^3*x^3)))/(35*c^4*d^4*Sqrt[d + e*x])

________________________________________________________________________________________

fricas [A]  time = 0.91, size = 193, normalized size = 0.72 \[ \frac {2 \, {\left (5 \, c^{3} d^{3} g^{3} x^{3} + 35 \, c^{3} d^{3} f^{3} - 70 \, a c^{2} d^{2} e f^{2} g + 56 \, a^{2} c d e^{2} f g^{2} - 16 \, a^{3} e^{3} g^{3} + 3 \, {\left (7 \, c^{3} d^{3} f g^{2} - 2 \, a c^{2} d^{2} e g^{3}\right )} x^{2} + {\left (35 \, c^{3} d^{3} f^{2} g - 28 \, a c^{2} d^{2} e f g^{2} + 8 \, a^{2} c d e^{2} g^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{35 \, {\left (c^{4} d^{4} e x + c^{4} d^{5}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^3*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

2/35*(5*c^3*d^3*g^3*x^3 + 35*c^3*d^3*f^3 - 70*a*c^2*d^2*e*f^2*g + 56*a^2*c*d*e^2*f*g^2 - 16*a^3*e^3*g^3 + 3*(7
*c^3*d^3*f*g^2 - 2*a*c^2*d^2*e*g^3)*x^2 + (35*c^3*d^3*f^2*g - 28*a*c^2*d^2*e*f*g^2 + 8*a^2*c*d*e^2*g^3)*x)*sqr
t(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c^4*d^4*e*x + c^4*d^5)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e x + d} {\left (g x + f\right )}^{3}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^3*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*x + d)*(g*x + f)^3/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 188, normalized size = 0.70 \[ -\frac {2 \left (c d x +a e \right ) \left (-5 g^{3} x^{3} c^{3} d^{3}+6 a \,c^{2} d^{2} e \,g^{3} x^{2}-21 c^{3} d^{3} f \,g^{2} x^{2}-8 a^{2} c d \,e^{2} g^{3} x +28 a \,c^{2} d^{2} e f \,g^{2} x -35 c^{3} d^{3} f^{2} g x +16 a^{3} e^{3} g^{3}-56 a^{2} c d \,e^{2} f \,g^{2}+70 a \,c^{2} d^{2} e \,f^{2} g -35 f^{3} c^{3} d^{3}\right ) \sqrt {e x +d}}{35 \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}\, c^{4} d^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)^3*(e*x+d)^(1/2)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2),x)

[Out]

-2/35*(c*d*x+a*e)*(-5*c^3*d^3*g^3*x^3+6*a*c^2*d^2*e*g^3*x^2-21*c^3*d^3*f*g^2*x^2-8*a^2*c*d*e^2*g^3*x+28*a*c^2*
d^2*e*f*g^2*x-35*c^3*d^3*f^2*g*x+16*a^3*e^3*g^3-56*a^2*c*d*e^2*f*g^2+70*a*c^2*d^2*e*f^2*g-35*c^3*d^3*f^3)*(e*x
+d)^(1/2)/c^4/d^4/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.66, size = 218, normalized size = 0.81 \[ \frac {2 \, \sqrt {c d x + a e} f^{3}}{c d} + \frac {2 \, {\left (c^{2} d^{2} x^{2} - a c d e x - 2 \, a^{2} e^{2}\right )} f^{2} g}{\sqrt {c d x + a e} c^{2} d^{2}} + \frac {2 \, {\left (3 \, c^{3} d^{3} x^{3} - a c^{2} d^{2} e x^{2} + 4 \, a^{2} c d e^{2} x + 8 \, a^{3} e^{3}\right )} f g^{2}}{5 \, \sqrt {c d x + a e} c^{3} d^{3}} + \frac {2 \, {\left (5 \, c^{4} d^{4} x^{4} - a c^{3} d^{3} e x^{3} + 2 \, a^{2} c^{2} d^{2} e^{2} x^{2} - 8 \, a^{3} c d e^{3} x - 16 \, a^{4} e^{4}\right )} g^{3}}{35 \, \sqrt {c d x + a e} c^{4} d^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^3*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

2*sqrt(c*d*x + a*e)*f^3/(c*d) + 2*(c^2*d^2*x^2 - a*c*d*e*x - 2*a^2*e^2)*f^2*g/(sqrt(c*d*x + a*e)*c^2*d^2) + 2/
5*(3*c^3*d^3*x^3 - a*c^2*d^2*e*x^2 + 4*a^2*c*d*e^2*x + 8*a^3*e^3)*f*g^2/(sqrt(c*d*x + a*e)*c^3*d^3) + 2/35*(5*
c^4*d^4*x^4 - a*c^3*d^3*e*x^3 + 2*a^2*c^2*d^2*e^2*x^2 - 8*a^3*c*d*e^3*x - 16*a^4*e^4)*g^3/(sqrt(c*d*x + a*e)*c
^4*d^4)

________________________________________________________________________________________

mupad [B]  time = 3.66, size = 218, normalized size = 0.81 \[ -\frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (\frac {\sqrt {d+e\,x}\,\left (32\,a^3\,e^3\,g^3-112\,a^2\,c\,d\,e^2\,f\,g^2+140\,a\,c^2\,d^2\,e\,f^2\,g-70\,c^3\,d^3\,f^3\right )}{35\,c^4\,d^4\,e}-\frac {2\,g^3\,x^3\,\sqrt {d+e\,x}}{7\,c\,d\,e}+\frac {6\,g^2\,x^2\,\left (2\,a\,e\,g-7\,c\,d\,f\right )\,\sqrt {d+e\,x}}{35\,c^2\,d^2\,e}-\frac {2\,g\,x\,\sqrt {d+e\,x}\,\left (8\,a^2\,e^2\,g^2-28\,a\,c\,d\,e\,f\,g+35\,c^2\,d^2\,f^2\right )}{35\,c^3\,d^3\,e}\right )}{x+\frac {d}{e}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)^3*(d + e*x)^(1/2))/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2),x)

[Out]

-((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*(((d + e*x)^(1/2)*(32*a^3*e^3*g^3 - 70*c^3*d^3*f^3 + 140*a*c^2
*d^2*e*f^2*g - 112*a^2*c*d*e^2*f*g^2))/(35*c^4*d^4*e) - (2*g^3*x^3*(d + e*x)^(1/2))/(7*c*d*e) + (6*g^2*x^2*(2*
a*e*g - 7*c*d*f)*(d + e*x)^(1/2))/(35*c^2*d^2*e) - (2*g*x*(d + e*x)^(1/2)*(8*a^2*e^2*g^2 + 35*c^2*d^2*f^2 - 28
*a*c*d*e*f*g))/(35*c^3*d^3*e)))/(x + d/e)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {d + e x} \left (f + g x\right )^{3}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)**3*(e*x+d)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)*(f + g*x)**3/sqrt((d + e*x)*(a*e + c*d*x)), x)

________________________________________________________________________________________